114. Pour tout entier naturel n on définit les suites (a_n) et (b_n) par :

$$\begin{cases} a_0 = 1, \ b_0 = 0 \\ a_{n+1} = \frac{1}{3}a_n + \frac{1}{2}b_n. \\ b_{n+1} = \frac{2}{3}a_n + \frac{1}{2}b_n \end{cases}$$

<u>L'objectif de cet exercice</u> est de déterminer une expression explicite du terme général de ces suites.

Partie I - Étude directe de la suite (a,)

- 1. Démontrer que pour tout entier $n \in \mathbb{N}$ on a $a_{n+1} + b_{n+1} = a_n + b_n = 1$. Remarquer que l'on a notamment $b_n = 1 a_n$ pour tout $n \in \mathbb{N}$.
- 2. En déduire que, pour tout entier naturel n, on a $a_{n+1} = -\frac{1}{6}a_n + \frac{1}{2}$.
- 3. La suite (a_n) est une suite arithmetico-géométrique : nous pouvons étudier son comportement grâce à l'utilisation d'une suite auxiliaire :
- a. On pose $u_n = a_n \frac{3}{7}$ pour tout $n \in \mathbb{N}$. Démontrer que (u_n) est une suite géométrique, dont on donnera le premier terme et la raison.
- **b.** En déduire l'expression de u_n ; de a_n et enfin de b_n en fonction de n.

Partie II - Utilisation du calcul matriciel

- 1. Pour tout $n \in \mathbb{N}$ on pose $U_n = \binom{a_n}{b_n}$. Démontrer que l'on a $U_{n+1} = MU_n$ pour tout $n \in \mathbb{N}$ où M est une matrice carrée d'ordre 2 que l'on précisera.
- 2. Démontrer par récurrence que pour tout $n \in \mathbb{N}$ on a $U_n = M^n U_0$.
- 3. On pose $P = \begin{pmatrix} 3 & -1 \\ 4 & 1 \end{pmatrix}$. Démontrer que P est inversible et calculer son inverse.
- 4. Démontrer que $D = P^{-1}MP$ est une matrice diagonale dont on donnera l'expression.
- 5. En déduire que $M = PDP^{-1}$ puis démontrer que, pour tout $n \in \mathbb{N}$, on a $M^n = PD^nP^{-1}$. Donner l'expression de la matrice M^n en fonction de n.
- 6. En utilisant la question 3., déterminer les termes généraux des deux suites (a_n) et (b_n) . Comparer avec le résultat obtenu à la fin de la partie l.